这周不去研学,待在教室里板刷了八套数学卷,发现了一道有意思的题。 题目大意 有双曲线 C:x^2-y^2=2 ,设 A 为其左顶点,D(0,\sqrt{2}) , M 在左支上, N 在 C 右支上,且 M,A,N 三点不共线, AD 平分 \angle MAN
赛时喜提 \textcolor{green}{100}+\textcolor{red}{0}+\textcolor{orange}{30}+\textcolor{red}{5}=\textcolor{orange}{135} ,但其实真的是信心赛,仅花 10min 就补成 \textcolor{gr
首先简化问题很明显,每组有用的只有前缀最大值。 先想想贪心,不可做,因为一组的贡献会被其他组影响,所以考虑 \texttt{dp} 组与组之间无序,不能沿编号轴 \texttt{dp} ,考虑值域轴,每接上一个组只需要考虑当前最大值,且较大最大值一定由较小最大值转移而来,所以设 f_i 表示当前最大
考虑整个建边过程,任意 (a,b) 都连边肯定不好搞,因为只要求连通,所以看一下有没有等价方案,发现在某一天 m-i+1=g 时,把所有的 kg 向 g 连边是等价的,可以直接把询问两个端点丢到对应集合里,每次合并枚举小集合查大集合就能做到 n\log n #include<bits/stdc++.
怎么感觉我这个考场做法有点非常规啊 还是写写思路吧,初步观察数组 a 的顺序没用,有用的是每个元素的出现次数数组 cnt ,考虑将 cnt 画成直方图研究一下,然后 (x,x,x),(x,x+1,x+2) 分别变为了 3\times 1,1\times 3 的矩形,而且覆盖的时候还能纵向断开(同时这
problem 疑似神题 首先发现一个事情:相同颜色的书一定是一起动或者一起不动,即行为平行。 发现了这件事就可以简单 \texttt{dp} 了。 #include<bits/stdc++.h> using namespace std; #define fio(x) freopen(x".in",